首页> 外文OA文献 >Exploiting Multi-level Parallelism for Low-latency Activity Recognition in Streaming Video
【2h】

Exploiting Multi-level Parallelism for Low-latency Activity Recognition in Streaming Video

机译:利用多级并行技术在流视频中实现低延迟活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Video understanding is a computationally challenging task that is critical not only for traditionally throughput-oriented applications such as search but also latency-sensitive interactive applications such as surveillance, gaming, videoconferencing, and vision-based user interfaces. Enabling these types of video processing applications will require not only new algorithms and techniques, but new runtime systems that optimize latency as well as throughput. In this paper, we present a runtime system called Sprout that achieves low latency by exploiting the parallelism inherent in video understanding applications. We demonstrate the utility of our system on an activity recognition application that employs a robust new descriptor called MoSIFT, which explicitly augments appearance features with motion information. MoSIFT outperforms previous recognition techniques, but like other state-of-the-art techniques, it is computationally expensive -- a sequential implementation runs 100 times slower than real time. We describe the implementation of the activity recognition application on Sprout, and show that it can accurately recognize activities at full frame rate (25 fps) and low latency on a challenging airport surveillance video corpus.
机译:视频理解是一项具有计算挑战性的任务,不仅对于传统的面向吞吐量的应用程序(例如搜索),而且对于延迟敏感的交互式应用程序(例如监视,游戏,视频会议和基于视觉的用户界面)都至关重要。启用这些类型的视频处理应用程序将不仅需要新的算法和技术,还需要优化延迟和吞吐量的新运行时系统。在本文中,我们提出了一个名为Sprout的运行时系统,该系统通过利用视频理解应用程序中固有的并行性来实现低延迟。我们在活动识别应用程序上演示了我们系统的实用程序,该应用程序使用了一个称为MoSIFT的健壮的新描述符,该描述符使用运动信息显式增强了外观特征。 MoSIFT优于以前的识别技术,但与其他最新技术一样,它在计算上也很昂贵-顺序实现的运行速度比实时运行慢100倍。我们描述了活动识别应用程序在Sprout上的实现,并表明它可以在具有挑战性的机场监视视频语料库上以全帧速率(25 fps)和低延迟准确地识别活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号